
Evolving Reactive Micromanagement Controller for
Real-Time Strategy Games

1Martin ČERTICKÝ, 2Michal ČERTICKÝ

1Dept. of Cybernetics and Artificial Intelligence, FEI TU of Košice, Slovak Republic
2Faculty of Electrical Engineering, Czech Technical University in Prague, Czech Republic

1martin.certicky@student.tuke.sk, 2michal.certicky@agents.fel.cvut.cz

Abstract—Real-Time Strategy (RTS) games are a genre of
video games representing an interesting, well-defined adversarial
domain for Artificial Intelligence (AI) research. One of many sub-
problems that RTS players need to solve is the micromanagement
of individual units (simple agents carrying out player’s com-
mands) during combat. Numerous multi-agent reactive control
mechanisms have already been developed to maximize the combat
efficiency of controlled units. Majority of these mechanisms make
use of numeric parameters that need to be fine-tuned in order
to achieve desired behavior. Due to a large number of these
parameters, assigning them manually is inconvenient and training
them by machine learning methods usually takes a long time
(search space is too large). To reduce the search space and
accelerate the training, we propose a simple reactive controller
with only eight parameters. We implement it for a classic RTS
game StarCraft: Brood War and train the parameters using
genetic algorithms. Our experiments demonstrate an impressive
combat performance after only a small number of generations.

Keywords—Genetic Algorithms, Evolution, RTS, microman-
agement, StarCraft.

I. INTRODUCTION

Real-time Strategy (RTS) games, as a genre of video games
in which players manage economic and strategic tasks by
gathering resources and building bases, increase their military
power by researching new technologies and training units,
and lead them into battle against their opponent(s), serve as
an interesting domain for Artificial Intelligence (AI) research.
They represent a well-defined, complex adversarial systems [1]
which pose a number of interesting AI challenges in the areas
of planning, dealing with uncertainty, domain knowledge ex-
ploitation, task decomposition and, most relevant to the scope
of this article, spatial reasoning and machine learning [2].

Research in the area of RTS game AI is usually classified ac-
cording three levels of abstraction: high-level strategy, middle-
level tactics and low-level reactive unit control (referred to as
“micromanagement” by RTS players). Reactive control, as a
challenge addressed by this paper, aims at maximizing the
effectiveness of individual units of different types in combat
by moving them on the battlefield and selecting the attack
targets in response to terrain and the activity of opponent’s
units.

Decision-making for reactive unit control can in general take
centralized or decentralized (distributed) approach. Centralized
approaches try to control the whole group of units at once
by searching a game tree. For example, Churchill et al. [3]
presented a variant of alpha-beta search and Wang et al. [4]
employed a Monte-Carlo planning approach to the problem

of micromanagement. Unfortunately, centralized solutions are
usually too slow due to large search space and can only be
applied to situations with low unit counts.

Decentralized approaches are much more common, because
they scale better to situations with higher numbers of con-
trolled units. The search space is significantly reduced by
making the control decisions for each unit independently of
others. Decentralized solutions, which often take advantage
of potential fields or influence maps, have one thing in com-
mon each unit is controlled by a relatively simple controller
algorithm. The unit controller is a state machine that reacts
solely to current game state without performing any kind of
lookahead search.

The controller always comes with several parameters that
need to be fine-tuned in advance to achieve a desired effective
behavior. There has been a significant amount of work using
machine learning techniques like Reinforcement Learning,
Bayesian Modelling or Genetic Algorithms (GA) to train the
parameters of underlying controller algorithm automatically –
multiple examples of research in this area can be found in a
survey paper by Ontanón et al. [2]. However, a general draw-
back of decentralized micromanagement techniques is the high
number of controller’s parameters, leaving us with too many
possible value assignments [2] (problem of dimensionality).
For example, Liu et al. [5] used GA to train the values of 14
different parameters (chromosome encoded as a 60-bit string),
Ponsen [6] used 20 genes to train 20 parameters for combat-
related actions and Sandberg el al. [7] trained 21 parameters
of their micromanagement controller.

To address the problem of dimensionality, we propose a
controller with only eight parameters, as described in Section
II. We train these parameters using the GA with the population
of 32 individuals, roulette wheel selection method and uniform
cross-over method, according to detailed description in Sec-
tion III. Finally, the performance of the trained controller is
discussed in Section IV.

We implemented and tested our solution in a classic RTS
game StarCraft: Brood War by Blizzard Entertainment, which
was accessed via application programming interfaces BWMir-
ror1 and BWAPI2.

II. UNIT CONTROLLER

We propose a simple unit controller, implemented as a
finite state machine with as few adjustable parameters as

1http://github.com/vjurenka/BWMirror/
2http://github.com/bwapi/bwapi/

http://github.com/vjurenka/BWMirror/
http://github.com/bwapi/bwapi/


possible to address the problem of dimensionality – low
number of parameters to fine-tune reduces the assignment
search space and makes the training faster. The controller is
called individually for each unit on each logical frame of the
game (approximately 23.81 times per real-world second on
the “Fastest” game speed). On each frame, a unit is either
left untouched or is assigned a new command. There are two
types of commands that can be assigned by the controller:
move(Position pos) or attack(Unit enemy). See
the flow chart describing the controller’s implementation in
Figure 1.

On game frame

Get retreat position

Unit can 
attack this 

frame

Attack 
animation 
in progress

Unit is 
Moving

Don’t issue any 
commands

Are there 
enemies in 

range?

Should we 
retreat?

Get best target
Get best attack 

position

Move to position Attack target Move to position

NO

NO NO

NO

YES

YES

YES YES

YES

NO

Fig. 1. Flow chart describing the reactive unit controller. Parts of the
controller using parameters trained by GA are highlighted by the blue color.

First, the controller checks if a given unit is currently
executing a move command. If it is, it checks if the unit
is able to attack at this frame (units in StarCraft must wait
a specified number of frames, called “weapon cooldown”,
between individual attacks). If the unit is able to attack and
there are some enemy units (targets) in its attack range, the
controller selects the best target and issues an attack com-
mand (target selection is explained in subsection II-A). If there
are no targets in range, the best position from its surrounding
area is selected (subsection II-B) and the unit receives a move
command sending it there. If the unit is already executing
an attack command on the current frame but it’s not in the
middle of attack animation (attack animation should not be
interrupted), it has two options: continue attacking or retreat
to a safer position3. The decision to retreat is parametrized
and described in subsection II-C, but the selection of retreat
position is hard-coded – the controller simply computes the
retreat vector directed away from the biggest enemy threats.

Following three subsections describe all the functions con-
taining the parameters that were fine-tuned by the genetic
algorithm. The total number of parameters is eight and each
of them has a value from interval [0, 1].

A. Selecting an Attack Target

The following function is used to select the most appropriate
target from all the enemy units in our unit’s attack range.
The function scores enemy units and outputs the one with

3We intentionally do not let units switch between the targets in their range
because such switch causes a long pauses between the attacks in StarCraft.
This, in general, negatively impacts the performance.

the highest score to be used as an argument for the attack
command.

Score = (D · p1)− (HP · p2) + (L · p3)

where D is the damage of a given enemy unit (multiplied by 3
to increase its significance without normalising the value) and
HP is the sum of its remaining Hit Points and Shields. The L
variable equals 100 if the sum of unit’s remaining Hit Points
and Shields is lower than our unit’s damage. Otherwise, the
L variable equals 0. Each of the variables in this function is
multiplied by an evolved parameter (p1, p2, p3).

B. Selecting an Attack Position

Next function selects the most appropriate position for a
unit to move to when it intends to attack enemy targets but
has no targets in range. This function computes the score of
a collection of walk tiles surrounding our unit (see Figure 2)
and returns the position of the one with the highest score. This
position is used as an argument for the move command.

Fig. 2. Walk tiles around our unit with the assigned scores. Walk tiles in
range of multiple enemy units have the lowest score.

We use the following equation to score a walk tile. Again,
the one with the highest score is used as a function’s output.

Score = Df · p4 −Dt · p5 − L · p6 − C · p7

where Df is the sum of the damage our unit is able to inflict
from the examined tile and Dt is the sum of the damage that
the enemy units are able to deal to our unit if it is moved to
that tile. The L variable is similar to the one from the previous
method – it equals 100 if the sum of the damage of enemy
units having range on examined tile is higher than remaining
Hit Points and Shields of our unit (equals 0 if not). Variable
C equals 50 if the path to the examined position crosses the
path of a moving friendly unit or if that path collides with any
non-moving unit (equals 0 if not). Again, all the variables are
multiplied by evolved parameters (p4-p7).

C. Deciding to Retreat

The last parametrized function returns True if our unit
should retreat to a safer location. The retreat decision is made
if the following holds:



D ≥ HP · p0

where D is sum of damage of all units currently attacking our
unit and HP is the sum of remaining Hit Points and Shields
of our unit. The HP variable is multiplied by an evolved
parameter p0.

III. EVOLVING THE PARAMETERS

It is known that evolutionary optimization by simulating
fights can be easily adapted to any parameter-dependent mi-
cromanagement control model [2]. To train the parameters
of our controller, we used three different scenarios – each
scenario had our AI player face a different type of commonly
used enemy units (more details can be found in the following
section). Enemy units were controlled by standard built-in
StarCraft AI script. The controller was trained using the
population of 32 individuals during 15 generations.

A. Encoding

Every individual is represented by a vector of 8 real numbers
from the interval [0, 1], each representing a single parameter
used in our controller.

B. Evaluation

The game ends if one of the players loses all the units
or if the game hits the predefined time limit. After that, we
evaluate the current individual using the sum of remaining Hit
Points and Shields of all its surviving units and substract the
Hit Points and Shields of surviving enemy units. The final
fitness of an individual is averaged over 5 games to lower the
randomness caused by the StarCraft mechanics and by varying
behavior of the enemy AI script.

C. Selection Mechanism

We use a roulette-wheel selection method in our GA. Since
negative fitness values are not acceptable for this method,
we apply windowing to ensure the positive values during the
selection. Exactly half of the population is selected for the
parent role (while each individual may be selected multiple
times). Slight form of elitism is also applied on the populations
– the best member of each population is guaranteed to become
a parent at least once.

D. Genetic Operators

1) Cross-over: The GA uses a uniform cross-over with the
mixing ratio of 0.5. The offspring has half of the genes of
each parent on average, as the cross-over points are chosen
randomly throughout the gene.

2) Mutation: We apply a 10% chance of uniform mutation
for each individual carrying out to the next generation. The
mutation operator is applied after cross-over of the population
is done to prevent mutating the individuals prematurely and
possibly losing well-scored offsprings.

IV. PERFORMANCE

In the training scenarios, our AI player controlled a squad
of “Dragoon” type units (widely used StarCraft unit with an
average attack range). Three scenarios with different types of
enemy units were chosen for the training due to difference
in desired behavior depending on enemy unit’s attack range.
When facing melee (close-combat) or short-ranged units, the
Dragoons have a major advantage if they learn to apply so-
called “kiting” behavior (a hit-and-retreat technique com-
monly used in RTS games). On the other hand, too frequent
retreating while facing enemy units with the same or longer
attack range might lead to decrease in the performance.

The performance was compared to standard built-in Star-
Craft AI script (the variant used in “custom game” mode). We
computed the fitness of the built-in AI using the same fitness
function and averaged the value over 5 games.

A. Dragoons vs. Zealots scenario

Zealots belong among the most commonly used melee
units in StarCraft. After the initial generation, the majority of
individuals adopted similar values of first parameter (handling
the retreat decisions) and showed an elusive kiting behavior
patterns during their games. After only a few generations, the
results of the controller were fairly close to absolute optimum
(see Figure 3). The controller was outperforming the native
AI massively.

-1400

-1200

-1000

-800

-600

-400

-200

0

200

400

600

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Fi
tn

es
s

Generations

Best Member Average Score Built-in AI

Fig. 3. Dragoons vs. Zealots scenario: Fitness of the best individual (blue
line) and the average fitness of the population (red line) over time (15
generations) compared to the fitness of built-in AI (grey line).

B. Dragoons vs. Marines scenario

Marines were chosen for the second scenario as the cheap
and common short-ranged unit. The convergence of the GA
was not as fast as in first scenario (see Figure 4), yet the
behavior of the AI player ended up being quite similar. The
units became elusive, taking advantage of their superior range
and kiting the enemy units. It should be noted that with the
improving performance of the AI player, the games became
longer. This was due to dragoons kiting the enemy units,
attacking only if they were in safe distance.

C. Dragoons vs. Dragoons (mirror match scenario)

The last experiment was performed on a mirror match
scenario, where the AI player faced a set of units identical to
its own. While the first two scenarios resulted in an observable
behavioral difference compared to native AI, this scenario was
not able to produce the results as impressive as the previous



-500

-400

-300

-200

-100

0

100

200

300

400

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Fi
tn

es
s

Generations

Best Member Average Score Built-in AI

Fig. 4. Dragoons vs. Marines scenario: Fitness of the best individual
(blue line) and the average fitness of the population (red line) over time (15
generations) compared to the fitness of built-in AI (grey line).

two. Kiting the enemy army with same number of units and
the same attack range is ineffective – even moving the units
may result in worse scores. Our individuals gradually learned
to reduce their movement and trained only the target selection.
After a few generations the AI player developed a behavior
similar to that of built-in AI scripts, which is also reflected in
the comparable fitness values (see Figure 5).

-450

-400

-350

-300

-250

-200

-150

-100

-50

0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Fi
tn

es
s

Generations

Best Member Average Score Built-in AI

Fig. 5. Dragoons vs. Dragoons scenario: Fitness of the best individual
(blue line) and the average fitness of the population (red line) over time (15
generations) compared to the fitness of built-in AI (grey line).

In two out of three scenarios, our AI player surpassed the
built-in AI’s performance significantly. The controller was
performing best while facing melee or short-ranged units.
When facing long-ranged units (the mirror scenario), the
controller was performing slightly worse than the native AI.

V. CONCLUSION

In this paper, we addressed the dimensionality problem,
typical for current parametrized RTS micromanagement solu-
tions. The problem is caused by the large number of numeric
parameters of the control mechanisms, that need to be fine-
tuned in order to achieve a desired effective behavior.

To reduce the search space and accelerate the training of
these parameters, we proposed a simple reactive controller
with only eight parameters. We implemented it for a classic
RTS game StarCraft: Brood War and trained the parameters
using genetic algorithm with roulette-wheel selection and
uniform cross-over methods.

Thanks to the reduction of search space, less than 10
generations with the population size of 32 proved sufficient
for GA to converge in every experimental scenario.

Compared to a built-in StarCraft AI, the performance proved
to be exceptionally good in two out of three experimental

scenarios (in the third one, it was comparable to that of the
built-in AI). The results depended on the type of enemy units
presented in each scenario. The hit-and-retreat behavior of
the AI player that emerged in two out of three scenarios
was extremely effective against melee or short-range units.
It proved to be ineffective against long-range enemy units and
was suppressed after a few generations to be replaced with
more static behavior.

The proposed controller has proven to be effective in typical
StarCraft combat situations only after a short training by
genetic algorithm.

REFERENCES

[1] M. Buro, “Call for AI research in RTS games,” in Proceedings of the 4th
Workshop on Challenges in Game AI, 2004, pp. 139–142.

[2] S. Ontanón, G. Synnaeve, A. Uriarte, F. Richoux, D. Churchill, and
M. Preuss, “A survey of real-time strategy game AI research and com-
petition in StarCraft,” IEEE Transactions on Computational Intelligence
and AI in Games, vol. 5, pp. 293–311, 2013.

[3] D. Churchill, A. Saffidine, and M. Buro, “Fast heuristic search for rts
game combat scenarios.” in AIIDE, 2012.

[4] Z. Wang, K. Q. Nguyen, R. Thawonmas, and F. Rinaldo, “Monte-carlo
planning for unit control in starcraft,” in 2012 IEEE 1st global conference
on consumer electronics (GCCE). IEEE, New York, 2012, pp. 263–264.

[5] S. Liu, S. J. Louis, and C. Ballinger, “Evolving effective micro behaviors
in rts game,” in Computational Intelligence and Games (CIG), 2014 IEEE
Conference on. IEEE, 2014, pp. 1–8.

[6] M. Ponsen, “Improving adaptive game ai with evolutionary learning,”
Ph.D. dissertation, Citeseer, 2004.

[7] T. W. Sandberg and J. Togelius, “Evolutionary multi-agent potential field
based ai approach for ssc scenarios in rts games,” Ph.D. dissertation,
Masters thesis, University of Copenhagen, 2011.


	Introduction
	Unit Controller
	Selecting an Attack Target
	Selecting an Attack Position
	Deciding to Retreat

	Evolving the Parameters
	Encoding
	Evaluation
	Selection Mechanism
	Genetic Operators
	Cross-over
	Mutation


	Performance
	Dragoons vs. Zealots scenario
	Dragoons vs. Marines scenario
	Dragoons vs. Dragoons (mirror match scenario)

	Conclusion
	References

