
Case-Based Reasoning for Army Compositions in
Real-Time Strategy Games

1Martin ČERTICKÝ, 2Michal ČERTICKÝ (4th year)
Supervisor: 3Peter SINČÁK

1,3Dept. of Cybernetics and Artificial Intelligence, FEI TU of Košice, Slovak Republic
2Dept. of Applied Informatics, FMPH Comenius University of Bratislava, Slovak Republic

1martin.certicky@tuke.sk, 2certicky@fmph.uniba.sk, 3peter.sincak@tuke.sk

Abstract—Over the years, there have been numerous successful
applications of artificial intelligence techniques in the field
of computer gaming. However, traditional graph-search based
techniques often fail to perform at human level in real-time
games with non-discrete game states. This fact encouraged the
research of Case-Based Reasoning (CBR) and its applications to
various aspects of computer game AI, especially in case of real-
time strategies. We show how CBR can be used in the process of
selecting the most effective army composition in a strategy game
StarCraft, based on the game-related knowledge base designed
by human experts (gamers).

Keywords—Case-Based Reasoning, Agent, Real-Time Strategy,
StarCraft

I. INTRODUCTION

Players of adversarial computer games often need to adapt
and react promptly and effectively to their opponent’s unpre-
dicted strategy. Most known artificial intelligence techniques
have already been applied to computer games [11]. In this
paper we will describe theoretical basics of an AI technique
called Case-Based Reasoning (CBR) and show how it can be
used to address one of the challenges from the field of game
AI. CBR solves current, previously unseen, problems based on
the solutions of similar past problems. The method includes
the comparison process of current situation to previous similar
cases. It chooses the most similar case from the past, and uses
its corresponding remembered solution.

Different game genres present different challenges for artifi-
cial players (agents/bots). This work focuses on so-called Real-
Time Strategy games (RTS). In RTS, as in other wargames,
the participants position and maneuver units and structures
under their control to secure areas of the map and/or destroy
their opponent’s assets. RTS games have shown to have huge
decision spaces that cannot be dealt with search based AI
techniques [11].

We will describe one possible application of CBR to playing
RTS games, specifically for dynamic selection of the effective
army composition in response to opponent’s strategy. This
is being done based on observation of opponent’s actions
and consequently comparing this knowledge with our case
database. We have implemented an agent using CBR in this
decision-making process within a real-time strategy game
StarCraft: Brood War1.

1StarCraft and StarCraft: Brood War are trademarks of Blizzard Entertain-
ment, Inc. in the U.S. and/or other Countries.

The main goals of the paper is to present the practical
application of CBR to an agent playing StarCraft and to
demonstrate that this technique can help create intelligent,
human-like behaviour in RTS games in general.

After the extensive overview of related work in section II,
section III describes in detail how the CBR is used to solve our
specific problem of selecting an optimal army composition. In
section IV, we introduce our agent and give some insight into
its implementation.

II. RELATED WORK

Over the last years, case-based reasoning has grown from
a rather specific and isolated research area to a field of
widespread interest [1]. The number if its applications in
various areas, including the game AI and opponent modelling,
is rapidly growing.

Focusing only on the domain of game AI research and
CBR applications relevant to this field, we were able to
identify a considerable amount of published work. It therefore
makes sense to categorize the games based on some kind of
taxonomy, such as the one introduced by Aha, Molineaux and
Ponsen in [2]. The games and corresponding CBR research is
divided based on both the traditional player’s viewpoint and
on the degree of attracted research interest into following 7
categories:

A. Classic board games:

Typical board games like chess or checkers present a
discrete, deterministic environment with two agents (players)
affecting it in episodic turns. Several researchers have ad-
dressed classic board games, beginning with Arthur Samuels
rote learning approach for playing checkers [15]. De Jong
and Schultzs GINA instead memorized a partial game tree for
playing Othello [4]. Chess has also been a popular topic. For
example, Kerner described a method for learning to evaluate
abstract patterns [10]. More recently, Powell et al.’s CHEBR
learned to play checkers given only a paucity of domain
knowledge [12].

B. Adventure games:

In adventure games, CBR has been used mainly for au-
tomated content generation. Fairclough and Cunningham de-
scribed OPIATE [7], which uses a case-based planner and

SCYR 2013 – 13th Scientific Conference of Young Researchers – FEI TU of Košice

70



constraint satisfaction to provide moves for a story director
agent so as to ensure that characters act according to a
coherent plot. Also, Daz-Agudo et al. described a knowledge-
intensive approach [5] that extracts constraints from a users
interactively-provided specification, uses them to guide case
retrieval and adaptation, and then creates a readable plot using
natural language generation techniques.

C. Team sports:

Team sport games provide a challenging environment for
the problems of real-time multi-agent coordination and plan-
ning, but do not involve complicating dimensions common
to strategy games, such as economies, research, and warfare.
Quite popular instance of such game is the RoboCup Soccer
[14]. Wendler and Lenz described an approach for identifying
where simulated agents should move [19], while Wendler et al.
reported strategies for learning to pass [20]. Gabel and Veloso
instead used a CBR approach to select members for a team
[9].

D. Real-time individual games:

Real-time games with single agent, such as first-person
shooters, leave little space for CBR application, but there
have been a few applications anyway. For example, Fagan and
Cunningham focused on a plan recognition task - they acquired
cases (state-action planning sequences) for predicting the next
action of a human player [6].

E. Real-time god/management games:

Single player management games require agents to mainly
deal with planning and plan adaptation tasks in possibly
non-deterministic environment. Fascianos MAYOR system [8]
learns from planning failures in Sim City2, a real-time city
management game. MAYOR monitors planning expectations
and employs a causal model to learn how to prevent failure
repetitions, where the goal is to improve the ratio of successful
plan executions.

F. Discrete/turn-based strategy:

Complex turn-based strategy games, like Freeciv (open-
source Civilization clone), require players to solve a number
of distinctive sub-tasks. An example of applying CBR to such
sub-task is Ulam et al.’s approach to defending the cities from
attackers [16].

G. Real-time strategy:

RTS games usually focus on military combat (versus one
or more adversaries), although they also include decision
dimensions concerning tasks such as exploration, economic
development, or research advancement in a non-deterministic,
partially observable environment. Aha et al. used a case-based
system CaT [2] to select offensive and defensive actions,
and Weber with Mateas [18] used CBR to select a build
order in Wargus (open-source Warcraft 2 clone). Cadena and
Garrido presented the combined approach using the Fuzzy sets
and CBR to deal with strategic and tactical management in
StarCraft [3].

2Sim City is a trademark of EA International Ltd.

III. OUR WORK

Generally, in RTS games, a player frequently faces a number
of ”typical situations”. Experienced players know how to
respond to these situations in optimal way thanks to knowledge
acquired by playing the game a lot.

Our artificial agent needed to have some kind of knowledge
representation structure, that would be able to hold such
information, and allow an agent to use it during the gameplay.

An intuitive choice of method for representing and rea-
soning about ”typical situations” is CBR, where every such
situation is considered an individual case.

The classic definition of CBR was coined by Riesbeck and
Schank [13]:

”A case-based reasoner solves problems by using or adapting
solutions to old problems.”

Conceptually CBR is commonly described by the CBR-
cycle (Fig. 1). This cycle comprises four activities (the four
REs):

1) Retrieve similar cases to the problem description.
2) Reuse a solution suggested by a similar case.
3) Revise or adapt that solution to better fit the new

problem if necessary.
4) Retain the new solution once it has beed confirmed or

validated [17].

Fig. 1. Four activities of the CBR cycle as described in [17].

In our case, these problems (cases) are certain game situa-
tions. More specifically, a game situation is represented by a
single composition of opponent’s army.

Solutions to these problems are adequate counter-strategies,
crafted by human players over time. A counter-strategy con-
sists of our desired army composition and a collection of
desired upgrades and technologies.

It is rare in RTS games that certain army composition has
more than one equally good “counter-composition” (counter-
strategy).

Generating such counter-compositions by some kind of rule-
based system would be too difficult (near unrealizable in real

SCYR 2013 – 13th Scientific Conference of Young Researchers – FEI TU of Košice

71



time), because of the complexity of StarCraft. Within every
composition, there exists a large number of synergic effects
and the overall effectivity against other compositions depends
on too many different factors.

CBR allows us to abstract from the low-level game me-
chanics and in-depth origins of the effectivity of individual
compositions, and take advantage of long-term experience of
human players.

We are able to make use of predisposed database of game
situations which we created. So far, we have not experimented
with automatic modification of this database by an agent.

IV. IMPLEMENTATION

To test this approach, we implemented an agent playing a
real-time strategy game StarCraft (Fig. 3). The agent was pro-
grammed in Java, using a JNIWBAPI interface, that allowed
us to access in-game information and issue order to our units
in real time, during the course of the game.

Simply put, our agent was constantly producing certain
types of units during the game. The choice of unit types to
produce is a result of evaluating the current game situation
and selecting the adequate (most similar) case.

Each case is a vector consisting of doubles
〈ratio, unitType〉, where unitType is a specific kind
of opponent’s unit and ratio enumerates its percentage in his
army.

A solution, corresponding to a case, is a similar struc-
ture. It also contains a collection of 〈ratio, unitType〉, but
unitTypes here correspond to units that we want to have in
our own army. Additionally, a solution can also contain several
upgrades and technologies that we want to research.

The case-solution list (database) is stored in simple text
file, where every line contains one case and a corresponding
solution.

Few examples can be found in Fig. 2 (note that the original
lines are divided, and some unit types are omitted to fit the
paper format).

15;Medic,20;Firebat,65;Marine---
40;Zealot,40;Dragoon,20;HighTemplar
@LegEnhancements,PsionicStorm

60;SiegeTank,40;Vulture---
50;Zealot,40;Dragoon,10;Arbiter
@LegEnhancements,StasisField

20;Ultralisk,15;Defiler,65;Zergling---
30;Archon,20;DarkArchon,50;Zealot
@MindControl,LegEnhancements

Fig. 2. Example cases with corresponding solutions. Solutions are divided
by "---" string.

Our agent uses a simple similarity function to determine
which case resembles the current game situation the most.
Specifically, similarity function S(A,B) compares two cases
(army compositions) A,B and returns the percentage of units
that they have in common. Let n be a total number of unit
types in the game and let ratio(A, i) denote the percentage
of i − th unit type in the case A. Function S(A,B) is then
defined as:

S(A,B) =

n∑
i=0

MIN
(
ratio(A, i), ratio(B, i)

)

Fig. 3. In-game screenshot of our agent playing a StarCraft 1 vs. 1 match.

After we find the case that resembles current game situation
the most, we use its solution as a parameter for our production
function, which tells the agent what unit types (and in what
ratio) to produce.

We evaluate game situations simply by observing the oppo-
nent’s army composition. It is of course changing constantly
during the game. Hence, in order to be successful, it is
essential to properly monitor the game map (to “scout”).

Consider the following example of army composition adap-
tation based on CBR: Thanks to scouting, we have noticed that
the opponent started producing many air units (switched from
“100%zerglings” to “50%zerglings, 50%mutalisks” army).
Our own army (“100%zealots”) therefore becomes uneffec-
tive, since it cannot attack air units. However, using our
similarity function, we determine that this situation resembles
one of the typical cases from our database - the one with
associated solution telling us to produce army effective against
both air and ground enemy units (“30%corsairs, 30%dragoons
and 40%zealots”). When we tell our production function to
produce this new composition, we should be able to deal with
new opponent’s army.

V. CONCLUSION & FUTURE WORK

Case-Based Reasoning offers a fine way to increase effi-
ciency of intelligent agents playing strategy games. In future
we are planning to create a system where our case database
will be able to adapt by itself. This will be done based on game
results and even on results of particular game sections (fights,
economic situations etc.). We are also planning to include
our CBR module in a student project MontyBot. The main
goal of this project, solved by several students from different
universities, is to create an intelligent StarCraft-playing agent
using a wide variety of methods of artificial intelligence.

In our paper we described step-by-step the CBR technique,
along with one of its possible application. We are certain this
method has a great potential not only in this field.

REFERENCES

[1] A. Aamodt, E. Plaza, ”Case-Based Reasoning: Foundational Issues,
Methodological Variations, and System Approaches,” AI Communications
7, 1994, pp. 39-59.

[2] D. W. Aha, M. Molineaux, M. Ponsen, ”Learning to Win: Case-Based
Plan Selection in a Real-Time Strategy Game,” Case-Based Reasoning
Research and Development, Lecture Notes in Computer Science Volume
3620, 2005, pp. 5-20.

SCYR 2013 – 13th Scientific Conference of Young Researchers – FEI TU of Košice

72



[3] P. Cadena, L. Garrido, ”Fuzzy Case-Based Reasoning for Managing
Strategic and Tactical Reasoning in StarCraft,” Advances in Artificial
Intelligence, Lecture Notes in Computer Science Volume 7094, 2011, pp.
113-124.

[4] K. De Jong, A. C. Schultz, ”Using experience-based learning in game
playing,” Proceedings of the Fifth International Conference on Machine
Learning, 1988, pp. 284-290.

[5] B. Daz-Agudo,P. Gervs, F. Peinado, ”A case based reasoning approach to
story plot generation,” Proceedings of the Seventh European Conference
on Case-Based Reasoning, 2004, pp. 142-156.

[6] M. Fagan, P. Cunningham, ”Case-based plan recognition in computer
games,” Proceedings of the Fifth International Conference on Case-Based
Reasoning, 2003, pp. 161-170.

[7] C. R. Fairclough, P. Cunningham, ”AI structuralist storytelling in com-
puter games,” Proceedings of the International Conference on Computer
Games: Artificial Intelligence, Design and Education, 2004.

[8] M. J. Fasciano, ”Everyday-world plan use,” Technical Report TR-96-07,
The University of Chicago, Computer Science Department, 1996.

[9] T. Gabel, M. Veloso, ”Selecting heterogeneous team players by case-
based reasoning: A case study in robotic soccer simulation,” Technical
Report CMU-CS-01-165, Pittsburgh, PA: Carnegie Mellon University,
School of Computer Science, 2001.

[10] Y. Kerner, ”Learning strategies for explanation patterns: Basic game
patterns with applications to chess,” Proceedings of the First International
Conference on Case-Based Reasoning, 1995, pp. 491-500.

[11] S. Ontaňón, K. Mishra, N. Sugandh, A. Ram, ”Case-Based Planning and
Execution for Real-Time Strategy Games,” Lectuire Notes in Computer
Science Volume 4626, 2007, pp. 164-176.

[12] J. H. Powell, B. M. Hauff, J. D. Hastings, ”Utilizing case-based reason-
ing and automatic case elicitation to develop a self-taught knowledgeable
agent,” In D. Fu and J. Orkin (Eds.) Challenges in Game Artificial
Intelligence: Papers from the AAAI Workshop, 2004.

[13] C.K. Riesbeck, R. Schank, ”Inside Case-based Reasoning,” Erlbaum,
Northvale, NJ, 1989.

[14] J. Ruiz-del-Solar, E. Chown, P. G. Ploeger, ”RoboCup 2010: Robot
Soccer World Cup XIV,” Lecture Notes in Computer Science, Vol. 6556,
2011.

[15] A. Samuel, ”Some studies in machine learning using the game of
checkers,” IBM Journal of Research and Development, 3(3), 1959, pp.
210-229.

[16] P. Ulam, A. Goel, J. Jones, ”Reflection in action: Model-based self-
adaptation in game playing agents,” In D. Fu and J. Orkin (Eds.) Chal-
lenges in Game Artificial Intelligence: Papers from the AAAI Workshop,
2004.

[17] I. Watson, ”Case-based reasoning is a methodology not a technology,”
AI-CBR, University of Salford, Salford M5 4WT, UK, 1999.

[18] B. G. Weber, M. Mateas, ”Case-Based Reasoning for Build Order
in Real-Time Strategy Games,” In Proceedings of the Fifth Artificial
Intelligence for Interactive Digital Entertainment Conference (AIIDE),
2009, pp. 106-111.

[19] J. Wendler, M. Lenz, ”CBR for dynamic situation assessment in an
agent-oriented setting,” In D.W. Aha and J.J. Daniels (Eds.), Case-Based
Reasoning Integrations: Papers from the AAAI Workshop, 1998.

[20] J. Wendler, G. A. Kaminka, M. Veloso, M. ”Automatically improving
team cooperation by applying coordination models,” In B. Bell and E.
Santos (Eds.) Intent Inference for Collaborative Tasks: Papers from the
AAAI Fall Symposium, 2001.

SCYR 2013 – 13th Scientific Conference of Young Researchers – FEI TU of Košice

73


