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Abstract — Despite excessive amount of research in the field of autonomous RTS gameplay,  

changes in strategies are often ignored leading to non-optimal results. Agents playing RTS games 

often use particular strategical decisions in order to cover as many gameplay scenarios as possible. In 

this paper, we focus on creation a dataset of atypical strategies and using machine learning methods 

for detection of these strategies during the gameplay. Such information could be used to predict the 

strategies before they occur, or to correspond witch adaptive behavior able to answer them. We 

approached the strategy detection in StarCraft game using a set of classifiers trained on data obtained 

from the various replays. Due to lack of proper datasets available to solve such tasks, the dataset was 

created and annotated to cover four selected strategies for our experiments. Binary classification 

models were trained to detect each particular strategy and evaluated in a set of replay data using 

cross-validation technique. Then, the overall platform architecture to train the models, export them 

and use in run-time during the gameplay was designed. Models which performed the best were then 

applied in the games to detect the covered strategies in replays or matches by bots or human players  
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I. INTRODUCTION 

The field of video-games is ever expanding with many sub-genres available. Although there 

are a wide variety of existing types, a lot of them share the same basic principles. With the 

evolution of technology, the games methodology has to evolve as well. This is not different with 

RTS (real-time strategy) games which first came in the early eighties, and are still managing to 

keep their popularity, sales and player base. RTS games as a genre of video games in which 

players manage economic and strategic tasks by gathering resources and building bases, increase 

their military power by researching new technologies and training units, and lead them into battle 

against their opponent(s), serve as an interesting domain for Artificial Intelligence (AI) research. 

Because of the nature of genre, the games are dynamic, fast, ever-changing and are one of the 

most played games throughout the history of video-games. 

StarCraft has more than 180+ variations of "typical" strategies, that are hard to identify prior 

to countering it during gameplay. Professional players spend years practicing their skills and 

studying many strategies while the casual players rarely choose optimal answer during real 

gameplay. Despite excessive amount of research done in the field of automated RTS gameplay 

[1, 2], subtle changes in strategies are often ignored leading to non-optimal results. Researchers 

often consider obvious strategical decisions in order to cover as many gameplay scenarios as 

possible. On the other hand, numerous papers deal with different aspect such as building of 

strategy model [4], prediction of build orders [5, 6, 7], or units micromanagement [3, 9]. In this 

paper, we focus on creating a dataset of atypical strategies which are often overlooked and using 

machine learning methods for creating adaptive behavior able to answer them. If the RTS games, 

especially StarCraft have that many strategies, is it possible to classify or predict them based on 

real-time data, with simple system to add another strategy later?  

To correctly predict the player’s strategy during the StarCraft match, models for detection of 

these strategies must be trained, evaluated and then used in the runtime. Several prediction 

methods were already applied for build order or strategy prediction [13, 14, 15]. We decided to 

approach the strategy detection as a predictive modeling task. Our approach will be based on 

training of a set of binary classification models on top of the data obtained from the replays. We 

decided to choose the binary classification approach from several reasons. When expanding the 

model to the new strategies, such approach presents more flexible solution, as it is not needed to 

re-train and re-deploy the model (only a new model for particular strategy will be added). Also, 
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the performance of binary models should be better as it is possible to tune the features and model 

parameters more specific to particular strategy. Following sub-sections describe the data 

understanding, pre-processing and modeling phases of the model building process [16]. 

II. DATA PREPARATION AND MODELS TRAINING 

For the problem discussed in this paper, there wasn’t a relevant annotated dataset among many 

datasets available [10, 11, 12]. Therefore, we needed to construct the dataset from available 

replays and select the relevant attributes for training of the models. The source of the data were 

replays of various matches during the SSCAI Tournament. The replays consisted of matches 

performed by various bots. Over 2961 replays were collected, each of them contained two custom 

bots made by various people in 1vs1 match. To get the data needed for training of the models, we 

used ScExtractor tool. The tool extracted all relevant information out of the selected replay files. 

Then, we developed a script, which plays every match again in real-time, frame by frame, in order 

to gain complete picture - record every possible state of any unit and any event which occurred 

during the game. Such database comprised complete game data of hundreds of replays and 

resulting dataset size was more than 7.6 GB. 

A. Data preprocessing  

In order to reduce the data size, we selected the tables and attributes relevant to discussed 

problem. Also, we processed the data using a set of functions to enhance them with specific 

attributes related to the player’s race or types of units built. After that, the data were aggregated 

based on 5 second interval (cca 240 frames). Resulting dataset was then annotated using OpenBW 

replay-viewer module. When the particular strategy was occuring during the match, the 

corresponding records (target attributes) were flagged to value 1, until bot’s strategy changed to 

something else. Attributes of the final dataset are listed in Table 1.  

PlayerReplayID Replay ID 

AC_FRAME Frame number 

Race:  Player's race 

NumberOfBuildings:  Buildings constructed 

NumberOfWorkers:  Workers trained 

NumberOfAttackUnits Attack units trained 

NumberOfAttacks:  Attacks completed 

RatioAttackToNon: Ratio attack actions  

to non-attack actions 

exp_feature1:  Protoss_Forge is built? 

exp_feature2:  Protoss_Pylon is built? 

exp_feature3:  Protoss_PhotonCannon is built? 

exp_feature4: Is scout (unit first tagged 

as a scout) in the group? 

exp_feature5:  Is scout near the enemy base? 

exp_feature6: Zerg_SpawningPool is built? 

exp_feature7:  Zerg_Extractor is built? 

exp_feature8:  Zerg_Zeglings are trained? 

exp_feature9:  How many Protoss_Gateway are built? 

exp_feature10: Protoss_Assimilator is built? 

exp_feature11:  Protoss_CybernaticsCore is built? 

exp_feature12:  Protoss_Zealots are trained? 

exp_feature13:  AttackUnits near the enemy base? 

Results1:  Strategy 1 - Cannon rush active? 

Results2: Strategy 2 - Zergling rush active? 

Results3:  Strategy 3 - 2-gate active? 

Results4:  Strategy 4 - 3-gate active? 

Table 1 - Attributes used in created dataset 
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B. Models training  

To solve the problem defined within this paper, we picked three models different classification 
models to compare; Random Forests, Naive Bayes and Gradient Boosting Tree, in order to get 

different results. Each model was trained to solve the binary classification task to predict one of 

the target attributes (Results1-4). We used the implementation of the models from the sci-kit learn 

python library. Feature selection was also performed for each of the trained models. As we used 

Random Forests, we extracted features importance from the initial model results. We used the 

data to select the attributes, which were not relevant to train the model for particular strategy. In 

case for Cannon Rush, we decided to remove the attributes Race and NumberOfWorkers from the 

training data since they either lack importance or are self-explanatory (Cannon Rush is possible 

only when the opponent’s race is Protoss). Similar approach was used to reduce the feature space 

for other strategies. For training of the models for particular strategies, we used data from 108 

replays which corresponded to 17778 records. During the model training, we used GridSearchCV 

method to examine the different combination of model hyper-parameters in order to find the best 
model with respect to the specified metrics. 

III. EXPERIMENTS AND EVALUATION 

For evaluation purposes, we used standard metrics used to specify the model quality such as 

precision and recall. Those were specified as the main factors during the hyper-parameters tuning 

and were used to evaluate the final models on the testing set. For training and evaluation of the 

models, we used 10-fold cross-validation approach.  

 

 

 

 
Table 2 - Precision and recall of trained models 

Table 2 summarizes the performance of the models Naive Bayes model is not included as its 

results were much worse, when comparing to Random Forests and GBM models. As it is can be 

seen from the results, GBM models performed well in each task. By incorporating the metrics, 

we were able to compare the different models. After closer consideration, we decided to use GBM 

models for several reasons. GBM gave almost constantly the best results in each considered 

metric on both datasets. he best GBM models were trained using those parameters: ∗ Strategy 1 

model: Maximum features: 10, learning rate: 0.01, max. depth: 5, min. samples in the leaf: 10 ∗ 

Strategy 2 model: Maximum features: 9, learning rate: 0.01, max. depth: 7, min. samples in the 

leaf: 50 ∗ Strategy 3 model: Maximum features: 7, learning rate: 0.01, max. depth: 4, min. samples 

in the leaf: 1 ∗ Strategy 4 model: Maximum features: 9, learning rate: 0.01, max. depth: 9, min. 

samples in the leaf: 20 We also considered time constraints - time to build the model and time to 

predict the newly arriving instances (in run-time). From that perspective, both Random Forests 

and GBM models achieved similar performance results, therefore running time was not 

considered as important feature when choosing the model. Trained models then were deployed 

in the proposed system (see section IV. Proposed architecture). System obtains live data from the 

actual replay or game (played by both, bot or human player) sends it to the server which computes 

prediction for each of trained strategies. Results are retrieved to the client and players (or users 

watching a replay) are being notified about detected strategy. Integration of proposed solution 

was tested on various replays and game matches involved players and multiple bots. 

IV. CONCLUSION 

This paper introduced a system to gather the data from StarCraft games and to detect the 

player’s strategy using machine learning models. For evaluating the system, predictive models 

were trained using collected game data and used to identify the chosen strategy in real-time. Our 

approach is based on training of binary classifiers for each covered strategy. This enables 
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extension of the system with to ability to use different models to identify other strategies (not 

covered in our use cases), or to update the existing models with more precise ones. Designed 

system also enables to deploy such models and use them on live data during the real-time 

gameplay. We also investigated enhancement of the particular strategy identification with finding 

sequential patterns characteristic for each particular strategy or to combine the detection system 

with case-based reasoning approaches in order to create recommendation system which would 

advise the player or agent a best counter-strategy for actual situation. 
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