
Strategy detection in real-time strategy

games using machine learning

Martin ČERTICKÝ, Martin SARNOVSKÝ, Tomáš VARGA

Department of Cybernetics and Artificial Intelligence, Faculty of Electrical

Engineering and Informatics, Technical University of Košice, Slovak Republic

martin.certicky@tuke.sk, martin.sarnovsky@tuke.sk, tomas.varga@student.tuke.sk

Abstract — Despite excessive amount of research in the field of autonomous RTS gameplay,

changes in strategies are often ignored leading to non-optimal results. Agents playing RTS games

often use particular strategical decisions in order to cover as many gameplay scenarios as possible. In

this paper, we focus on creation a dataset of atypical strategies and using machine learning methods

for detection of these strategies during the gameplay. Such information could be used to predict the

strategies before they occur, or to correspond witch adaptive behavior able to answer them. We

approached the strategy detection in StarCraft game using a set of classifiers trained on data obtained

from the various replays. Due to lack of proper datasets available to solve such tasks, the dataset was

created and annotated to cover four selected strategies for our experiments. Binary classification

models were trained to detect each particular strategy and evaluated in a set of replay data using

cross-validation technique. Then, the overall platform architecture to train the models, export them

and use in run-time during the gameplay was designed. Models which performed the best were then

applied in the games to detect the covered strategies in replays or matches by bots or human players

Keywords — Data analysis, Machine learning, Classification, Starcraft

I. INTRODUCTION

The field of video-games is ever expanding with many sub-genres available. Although there

are a wide variety of existing types, a lot of them share the same basic principles. With the

evolution of technology, the games methodology has to evolve as well. This is not different with

RTS (real-time strategy) games which first came in the early eighties, and are still managing to

keep their popularity, sales and player base. RTS games as a genre of video games in which

players manage economic and strategic tasks by gathering resources and building bases, increase

their military power by researching new technologies and training units, and lead them into battle

against their opponent(s), serve as an interesting domain for Artificial Intelligence (AI) research.

Because of the nature of genre, the games are dynamic, fast, ever-changing and are one of the

most played games throughout the history of video-games.

StarCraft has more than 180+ variations of "typical" strategies, that are hard to identify prior

to countering it during gameplay. Professional players spend years practicing their skills and

studying many strategies while the casual players rarely choose optimal answer during real

gameplay. Despite excessive amount of research done in the field of automated RTS gameplay

[1, 2], subtle changes in strategies are often ignored leading to non-optimal results. Researchers

often consider obvious strategical decisions in order to cover as many gameplay scenarios as

possible. On the other hand, numerous papers deal with different aspect such as building of

strategy model [4], prediction of build orders [5, 6, 7], or units micromanagement [3, 9]. In this

paper, we focus on creating a dataset of atypical strategies which are often overlooked and using

machine learning methods for creating adaptive behavior able to answer them. If the RTS games,

especially StarCraft have that many strategies, is it possible to classify or predict them based on

real-time data, with simple system to add another strategy later?

To correctly predict the player’s strategy during the StarCraft match, models for detection of

these strategies must be trained, evaluated and then used in the runtime. Several prediction

methods were already applied for build order or strategy prediction [13, 14, 15]. We decided to

approach the strategy detection as a predictive modeling task. Our approach will be based on

training of a set of binary classification models on top of the data obtained from the replays. We

decided to choose the binary classification approach from several reasons. When expanding the

model to the new strategies, such approach presents more flexible solution, as it is not needed to

re-train and re-deploy the model (only a new model for particular strategy will be added). Also,

587

the performance of binary models should be better as it is possible to tune the features and model

parameters more specific to particular strategy. Following sub-sections describe the data

understanding, pre-processing and modeling phases of the model building process [16].

II. DATA PREPARATION AND MODELS TRAINING

For the problem discussed in this paper, there wasn’t a relevant annotated dataset among many

datasets available [10, 11, 12]. Therefore, we needed to construct the dataset from available

replays and select the relevant attributes for training of the models. The source of the data were

replays of various matches during the SSCAI Tournament. The replays consisted of matches

performed by various bots. Over 2961 replays were collected, each of them contained two custom

bots made by various people in 1vs1 match. To get the data needed for training of the models, we

used ScExtractor tool. The tool extracted all relevant information out of the selected replay files.

Then, we developed a script, which plays every match again in real-time, frame by frame, in order

to gain complete picture - record every possible state of any unit and any event which occurred

during the game. Such database comprised complete game data of hundreds of replays and

resulting dataset size was more than 7.6 GB.

A. Data preprocessing

In order to reduce the data size, we selected the tables and attributes relevant to discussed

problem. Also, we processed the data using a set of functions to enhance them with specific

attributes related to the player’s race or types of units built. After that, the data were aggregated

based on 5 second interval (cca 240 frames). Resulting dataset was then annotated using OpenBW

replay-viewer module. When the particular strategy was occuring during the match, the

corresponding records (target attributes) were flagged to value 1, until bot’s strategy changed to

something else. Attributes of the final dataset are listed in Table 1.

PlayerReplayID Replay ID

AC_FRAME Frame number

Race: Player's race

NumberOfBuildings: Buildings constructed

NumberOfWorkers: Workers trained

NumberOfAttackUnits Attack units trained

NumberOfAttacks: Attacks completed

RatioAttackToNon: Ratio attack actions

to non-attack actions

exp_feature1: Protoss_Forge is built?

exp_feature2: Protoss_Pylon is built?

exp_feature3: Protoss_PhotonCannon is built?

exp_feature4: Is scout (unit first tagged

as a scout) in the group?

exp_feature5: Is scout near the enemy base?

exp_feature6: Zerg_SpawningPool is built?

exp_feature7: Zerg_Extractor is built?

exp_feature8: Zerg_Zeglings are trained?

exp_feature9: How many Protoss_Gateway are built?

exp_feature10: Protoss_Assimilator is built?

exp_feature11: Protoss_CybernaticsCore is built?

exp_feature12: Protoss_Zealots are trained?

exp_feature13: AttackUnits near the enemy base?

Results1: Strategy 1 - Cannon rush active?

Results2: Strategy 2 - Zergling rush active?

Results3: Strategy 3 - 2-gate active?

Results4: Strategy 4 - 3-gate active?

Table 1 - Attributes used in created dataset

Electrical Engineering and Informatics IX

Proceedings of the Faculty of Electrical Engineering and Informatics of the Technical University of Košice

588

B. Models training

To solve the problem defined within this paper, we picked three models different classification
models to compare; Random Forests, Naive Bayes and Gradient Boosting Tree, in order to get

different results. Each model was trained to solve the binary classification task to predict one of

the target attributes (Results1-4). We used the implementation of the models from the sci-kit learn

python library. Feature selection was also performed for each of the trained models. As we used

Random Forests, we extracted features importance from the initial model results. We used the

data to select the attributes, which were not relevant to train the model for particular strategy. In

case for Cannon Rush, we decided to remove the attributes Race and NumberOfWorkers from the

training data since they either lack importance or are self-explanatory (Cannon Rush is possible

only when the opponent’s race is Protoss). Similar approach was used to reduce the feature space

for other strategies. For training of the models for particular strategies, we used data from 108

replays which corresponded to 17778 records. During the model training, we used GridSearchCV

method to examine the different combination of model hyper-parameters in order to find the best
model with respect to the specified metrics.

III. EXPERIMENTS AND EVALUATION

For evaluation purposes, we used standard metrics used to specify the model quality such as

precision and recall. Those were specified as the main factors during the hyper-parameters tuning

and were used to evaluate the final models on the testing set. For training and evaluation of the

models, we used 10-fold cross-validation approach.

Table 2 - Precision and recall of trained models

Table 2 summarizes the performance of the models Naive Bayes model is not included as its

results were much worse, when comparing to Random Forests and GBM models. As it is can be

seen from the results, GBM models performed well in each task. By incorporating the metrics,

we were able to compare the different models. After closer consideration, we decided to use GBM

models for several reasons. GBM gave almost constantly the best results in each considered

metric on both datasets. he best GBM models were trained using those parameters: ∗ Strategy 1

model: Maximum features: 10, learning rate: 0.01, max. depth: 5, min. samples in the leaf: 10 ∗

Strategy 2 model: Maximum features: 9, learning rate: 0.01, max. depth: 7, min. samples in the

leaf: 50 ∗ Strategy 3 model: Maximum features: 7, learning rate: 0.01, max. depth: 4, min. samples

in the leaf: 1 ∗ Strategy 4 model: Maximum features: 9, learning rate: 0.01, max. depth: 9, min.

samples in the leaf: 20 We also considered time constraints - time to build the model and time to

predict the newly arriving instances (in run-time). From that perspective, both Random Forests

and GBM models achieved similar performance results, therefore running time was not

considered as important feature when choosing the model. Trained models then were deployed

in the proposed system (see section IV. Proposed architecture). System obtains live data from the

actual replay or game (played by both, bot or human player) sends it to the server which computes

prediction for each of trained strategies. Results are retrieved to the client and players (or users

watching a replay) are being notified about detected strategy. Integration of proposed solution

was tested on various replays and game matches involved players and multiple bots.

IV. CONCLUSION

This paper introduced a system to gather the data from StarCraft games and to detect the

player’s strategy using machine learning models. For evaluating the system, predictive models

were trained using collected game data and used to identify the chosen strategy in real-time. Our

approach is based on training of binary classifiers for each covered strategy. This enables

Electrical Engineering and Informatics IX

Proceedings of the Faculty of Electrical Engineering and Informatics of the Technical University of Košice

589

extension of the system with to ability to use different models to identify other strategies (not

covered in our use cases), or to update the existing models with more precise ones. Designed

system also enables to deploy such models and use them on live data during the real-time

gameplay. We also investigated enhancement of the particular strategy identification with finding

sequential patterns characteristic for each particular strategy or to combine the detection system

with case-based reasoning approaches in order to create recommendation system which would

advise the player or agent a best counter-strategy for actual situation.

ACKNOWLEDGEMENTS

This work was supported by Slovak Research and Development Agency under the contracts

No. APVV16-0213 and No. APVV-015-0731.

REFERENCES

[1] D. Churchill, A. Saffidine, and M. Buro, “Fast heuristic search for rts game combat

scenarios.” in AIIDE, 2012, pp. 112–117.

[2] Z. Wang, K. Q. Nguyen, R. Thawonmas, and F. Rinaldo, “Monte-carlo planning for

unit control in starcraft,” in Consumer Electronics (GCCE), 2012 IEEE 1st Global

Conference on. IEEE, 2012, pp. 263–264.

[3] M. Certick`y and M. Certick`y, “Evolving reactive micromanagement controller for

real-time strategy games,” in Proceedings of Scientific Conference of Young
Researchers, 2015, pp. 225–228.

[4] J.-L. Hsieh and C.-T. Sun, “Building a player strategy model by analyzing replays of

real-time strategy games,” in Neural Networks, 2008. IJCNN 2008.(IEEE World

Congress on Computational Intelligence). IEEE International Joint Conference on.

IEEE, 2008, pp. 3106–3111.

[5] B. G. Weber and M. Mateas, “Case-based reasoning for build order in real-time strategy

games.” in AIIDE, 2009.

[6] M. Certick`y and M. Certick`y, “Case-based reasoning for army compositions in real-

time strategy games,” in Proceedings of Scientific Conference of Young Researchers,

2013, pp. 70–73.

[7] N. Justesen and S. Risi, “Continual online evolutionary planning for in-game build

order adaptation in starcraft,” in Proceedings of the Genetic and Evolutionary
Computation Conference. ACM, 2017, pp. 187–194.

[8] M. Certicky, “Implementing a wall-in building placement in starcraft with declarative

programming,” arXiv preprint arXiv:1306.4460, 2013.M. Matzopoulos, “Dynamic

Process Modeling: Combining Models and Experimental Data to Solve Industrial

Problems,” in Process Systems Engineering, Weinheim, Germany: Wiley-VCH Verlag

GmbH & Co. KGaA, 2011, pp. 1–33.

[9] A. Shantia, E. Begue, and M. Wiering, “Connectionist reinforcement learning for

intelligent unit micro management in starcraft,” in Neural Networks (IJCNN), The 2011

International Joint Conference on. IEEE, 2011, pp. 1794–1801.

[10] G. Synnaeve, P. Bessiere et al., “A dataset for starcraft ai & an example of armies

clustering,” in AIIDE Workshop on AI in Adversarial Real-time games, vol. 2012,
2012.

[11] G. Robertson and I. D. Watson, “An improved dataset and extraction process for

starcraft ai.” in FLAIRS Conference, 2014.

[12] Z. Lin, J. Gehring, V. Khalidov, and G. Synnaeve, “Stardata: A starcraft ai research

dataset,” arXiv preprint arXiv:1708.02139, 2017.

[13] B. G. Weber and M. Mateas, “A data mining approach to strategy prediction,” in

Computational Intelligence and Games, 2009. CIG 2009. IEEE Symposium on. IEEE,

2009, pp. 140– 147.

[14] H. Park, H.-C. Cho, K. Lee, and K.-J. Kim, “Prediction of early stage opponents

strategy for starcraft ai using scouting and machine learning,” in Proceedings of the

Workshop at SIGGRAPH Asia. ACM, 2012, pp. 7–12.

[15] H.-C. Cho, K.-J. Kim, and S.-B. Cho, “Replay-based strategy prediction and build order
adaptation for starcraft ai bots,” in Computational Intelligence in Games (CIG), 2013

IEEE Conference on. IEEE, 2013, pp. 1–7.

[16] R. Wirth, “Crisp-dm: Towards a standard process model for data mining,” in

Proceedings of the Fourth International Conference on the Practical Application of

Knowledge Discovery and Data Mining, 2000, pp. 29–39.

Electrical Engineering and Informatics IX

Proceedings of the Faculty of Electrical Engineering and Informatics of the Technical University of Košice

590

