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Abstract—Despite excessive amount of research done in the
field of automated RTS gameplay, subtle changes in strategies
are often ignored leading to non-optimal results. Researchers
often consider obvious strategical decisions in order to cover as
many gameplay scenarios as possible. In this paper, we focus
on creating a dataset of atypical strategies which are often
overlooked and using machine learning methods for detection of
these strategies during the gameplay. Such information could be
used to predict the strategies before they occur, or to correspond
which adaptive behavior is able to answer them. In work
presented in this paper, we approached the strategy recognition
in StarCraft game using a set of classifiers trained on data
obtained from the various replays. As there was not a proper
dataset available to solve such task during our work, the dataset
was created and annotated to cover four selected strategies for
our experiments. Binary classification models were trained to
detect each particular strategy and evaluated in a set of replay
data using cross-validation technique. Then the overall platform
architecture to train the models, export them and use in run-
time during the gameplay was designed. Best performed models
were then applied to real games to detect the covered strategies
in replays or matches by bots or human players.

Index Terms—Data analysis, Machine learning, Classification,
StarCraft

I. INTRODUCTION

The field of video-games is ever expanding with many
sub-genres available. Although there are a wide variety of
existing types, a lot of them share the same basic principles.
With the evolution of technology the games methodology
have to evolve as well. This is not different with RTS (real-
time strategy) games which first came in the early eighties,
and are still managing to keep their popularity, sales and
player base. RTS games as a genre of video games in which
players manage economic and strategic tasks by gathering
resources and building bases, increase their military power by
researching new technologies and training units, and lead them
into battle against their opponent(s), serve as an interesting
domain for Artificial Intelligence (AI) research. Because of the
nature of genre, the games are dynamic, fast, ever-changing
and are one of the most played games throughout the history
of video-games.

Research in the area of RTS game Al is usually classified ac-
cording three levels of abstraction: high-level strategy, middle-
level tactics and low-level reactive unit control (referred to
as "micromanagement" by RTS players). Reactive control
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aims at maximizing the effectiveness of individual units of
different types in combat by moving them on the battlefield
and selecting the attack targets in response to terrain and
the activity of opponent’s units. Decision-making for reactive
unit control can in general take centralized or decentralized
(distributed) approach. Centralized approaches try to control
the whole group of units at once by searching a game tree. For
example, Churchill et al. [1] presented a variant of alpha-beta
search and Wang et al. [2] employed a Monte-Carlo planning
approach to the problem of micromanagement. Unfortunately,
centralized solutions are usually too slow due to large search
space and can only be applied to situations with low unit
counts [3].

A. Motivation

StarCraft' has more than 180+ variations of "typical” strate-
gies, that are hard to identify prior to countering it during
gameplay. Professional players spend years practicing their
skills and studying many strategies while the casual players
rarely choose optimal answer during real gameplay. Despite
excessive amount of research done in the field of automated
RTS gameplay, subtle changes in strategies are often ignored
leading to non-optimal results. Researchers often consider ob-
vious strategical decisions in order to cover as many gameplay
scenarios as possible. In this paper, we focus on creating a
dataset of atypical strategies which are often overlooked and
using machine learning methods for creating adaptive behavior
able to answer them.

II. PROBLEM DOMAIN

If the RTS games, especially StarCraft have that many
strategies, is it possible to classify or predict them based on
real-time data, with simple system to add another strategy later
on?

A. Environment Definition

For purposes of this research we have defined StarCraft
as a machine learning environment, according to work of
Russel and Norvig [4]. Using the the environment part of their
P.E.A.S. analysis we were able to define the game accordingly:

Uhttps://starcraft.com/
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1) Fully Observable vs. Partially Observable Environment:
We define StarCraft as an partially-observable environment.
One of the reasons is built-in "fog of war" mechanic. The
fog obscures the vision on map areas for players which do
not have any units nor buildings present at the time, even if
the areas were previously discovered . Another reason is that
one player does not have information about the other without
scouting his actions with self-owned units or buildings.

2) Deterministic vs. Stochastic Environment: Due to several
random events occurring throughout the games StarCraft is
a stochastic environment. For example, if an unit attacks
another unit placed on higher ground level (since the game
environment is not fully 2-dimensional) or if the attack pro-
jectile’s path is obstructed by environment, the projectile has
52.125% chance to succeed. In case both units have clear
vision of each other, the ranged projectiles have 99.609375%
chance of success. Cooldown as a time between two attacks
in StarCraft is measured in frames per second, which creates
another randomness factor in the environment, meaning that
50 frames cooldown actually means a range between 49 to 51
frames.

3) Episodic vs. Sequential Environment: Episodic envi-
ronment expects agent’s actions to be executed in periodi-
cal sequences. Another condition is that previous sequences
should not affect future ones. None of these conditions are
met in StarCraft, therefore we treat the game as a sequential
environment.

4) Static vs. Dynamic Environment: In StarCraft, more than
one player interfere with an environment. Additionally, there
are neutral entities (units) present in the game, procuring the
game as a dynamic environment.

5) Discrete vs. Continuous Environment: Since StarCraft
uses real numbers instead of natural numbers for numerous
calculations (e.g. health points), we define the environment as
continuous.

6) Single-agent vs. Multi-agent Environment: As stated
above, typically more than one players interfere with (play)
the game, therefore we consider StarCraft as a multi-agent
environment.

B. Challenges

We identified several challenges that needed to be dealt with
throughout our research:

o Expert knowledge of the game: External consultant was
asked to help define future modeled strategies.

o Missing dataset: We used replay data from BWAPI bot
vs. bot, primarily focusing on one bot with same strategy
against the others. How the dataset was constructed is
described in chapter V.

e Feature selection: The features were chosen using combi-
nation of replay observing and consulting with an expert.

e Proof of concept strategies: We focused on four selected
strategies which served as a test cases for our modeling
process.

e Real-time aspect: Due to the real-time nature of the game
a time interval had to be chosen in order to group the
actions.

III. STATE OF THE ART

In earlier work of Hsieh and Sun in 2008 they published one
of first articles that focus on building Al for StarCraft. They
used case-based reasoning approach to construct system for
learning and predicting individual player strategies by mining
series of actions from replays. In the conclusion of their work,
they mentioned how their research was limited due to closed
game environments [5]. Later in 2009 the first version of
Brood War API (BWAPI)> was released, using third-party
DLL tool to read and inject the code to memory. Using this
API, it was possible to call in-game functions. From that point
research on Al with StarCraft as a test bed skyrocket. First
competition was held at AIIDE 2010 and then since 2011 the
group later continued to automatize much of the process in
order to streamline it. After the two years AIIDE started to
host annual student competition that run throughout the year
with custom made bots in the bot vs. bot matches After the
release of BWAPI new research was added each year, and
now almost each major machine learning method has been
applied in StarCraft bot competitions. The StarCraft has an
edge against other RTS games in area of research. This is due
to its popularity and amount of replays and datasets created
throughout the years. Some of the most researched topics with
StarCraft are:

o Planning: Most of the research in the early days of
BWAPI focused highly on case-based approach. For ex-
ample using it as a reasoning technique for selecting build
orders [6],[7] or case-based planner using annotated re-
plays while turning them into cases. Later on the research
shifted to more abstract tasks such as planning the build
order in real-time [8],[9], or even to military approach
using chain of command by implementing hierarchical
adversarial search framework.

o Constrain Satisfaction and Optimization: Several inde-
pendent researches were done on walling, in which player
place a building to shelter himself against other players.
This strategy is specific type of spatial reasoning, used
many times by experienced players against rush strate-
gies. First paper published 2013 by M. Certicky used
answer set programming (ASP) to solve this problem
[10], while second one published in 2014 used adaptive
search technique [11]. Other researchers in this area focus
on building a framework called GHOST, that could be
also used for other games and even in the game engines
[12]. GHOST investigates solving any type of problems
encoded by a constrain satisfaction/optimization problem.

o Control: As one of the crucial aspect of any game,
research done in this area are among the most explored
and focused on unit micro management during combat
scenarios [1],[3]. As the games with scripted bots can

Zhttp://www.starcraftai.com/wiki/
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often seem uninteresting for casual players, the focus on
using reinforcement learning as an alternative technique
has been used for the bots to be more unpredictable and
even make their playstyle more human-like [13],[14].
There was also research done on using potential flows
for scout units as better scouting has proven to improve
player’s chances to win [15].

Datasets: First official BWAPI dataset was released in
2012 [16]. This dataset included such detailed infor-
mation as where and how to attack, and analysis of
units’ movements. Later work on datasets also included a
extraction tool that we used in our research [17]. The tool
can extract every state in the game, basically describing
the whole game in one SQL entry. Later during our
work, this tool was used to collect information from
professional replays (described in chapter V). Another
used dataset is named STARDATA [18]. It was released in
2017 together with new extraction tools using Torchcraft®.
It consists of 65646 StarCraft replays that contains 1535
million frames and 496 million player actions.

In 2009, Weber et al. published on of first researches
using machine learning approach in predicting the opponent’s
strategy in RTS games. It used thousands of professional
replays to acquire domain knowledge and perform opponent
modeling. Machine learning was used to recognize the units
opponent is producing before being fully scouted along with
his strategy. Strategic decisions made in-game were encoded
into a feature vector of build orders from the game, which was
also labeled with specific strategy based on the previous pro-
fessional gameplay. The evaluation process used several dif-
ferent algorithms such as C4.5, state lattice, NNge, Boosting.
With the results machine learning algorithms outperformed the
state lattice on every experiments. The algorithms successfully
predicted strategy with high confidence [19]. In 2012, Park et
al. focused on predicting early stages of opponent’s strategy
using scouting units with their own navigation strategy. Their
training data consisted of collection of matches between their
bot (Xel’'naga) and various human players. After collecting
the replays, they applied feature extraction methods and thir-
teen machine learning algorithms to pre-processed data. They
pointed out how the expert knowledge poses essential role
in helping the machine learning methods to successfully train
their models [20]. A year later, same team was able to propose
a framework that used replays for creating adaptive bot which
took advantage of predicting the strategies and build orders of
its’ opponents. Their experiments showed promising results
in a game with full information (e.g. without fog of war)
while using decision tree learning. However, it did not succeed
with same accuracy in the early stages of the game. After
introduction of hybrid technique, when instead of decision tree
rotation forest was used the prediction became successful. The
experimentation with build orders demonstrated outcome with
results of 6-7 minutes, as the best game time to change the
build order. At the end the replays with the human players

3https://github.com/TorchCraft
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had better results thanks to more precise scouting, which is
the biggest weakness of many bots [21].

IV. PROPOSED ARCHITECTURE

We designed a client-server architecture using, as depicted
in Fig.1. BWBigBrother is a python server where the training
of our machine learning models was done; data processing,
prediction, training. This approach was chosen due to different
programming languages used in training and processing our
models (Python) and BWAPI (Java). Initially, we have exper-
imented with porting our work in PMML* and PFA® but the
results were unsatisfactory. Using client-server approach, we
were able to update models in any moment without needing to
interfere with player’s software while allowing the community
to contribute safely with their own work.
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Fig. 1: Description of proposed architecture. Datasets
used are described in section V.

We used a web framework Flask in combination with
open-source server example SK Learn Flask®. This server
uses Pickle mechanism from Sci-kit Learn library, capable
of automated building, training and testing many machine
learning models. Additionally, pickle allows users to save and
load trained models back to the memory at any time while
outputting models in simple .pk/ file. We chose latter versions
of BWAPI to be able to take advantage of community support
while allowing new community work to be done with our
research.

In the following chapters we address main building blocks
along with bottlenecks that arose in the process of development
of the system. The BWAPI is used to read data from the
memory and send it to our program to onStart() function.
In this function, system loads player’s information from the
settings file and BWTA” module for analyzing terrain and map
is also launched.

The BWAPI has function onFrame() where it receives every
update about every unit. The system collects the data only from
a player specified in the settings file. Every relevant action by
each unit is recorded frame by frame. Only relevant actions are
identified to be recorded for modeling purposes. This allows

“https://en.wikipedia.org/wiki/Predictive_Model_Markup_Language/
Shttps://en.wikipedia.org/wiki/Portable_Format_for_Analytics/
Ohttps://github.com/amirziai/sklearnflask
http://liquipedia.net/starcraft/BWTA



us to store persistent data as each action has to have different
attributes.

To record any action a new function addNewAction() had

to be made, where the system performs a dictionary lookup
to ensure consistency between two Java BWAPI interfaces;
BWMirror () used here, and INIBWAPI used in ScExtractor
and for our models. This dictionary lookup is converting
BWMirror id types to old INIBWAPI ids.
Another condition in the onFrame() sends actions to server
every 240 frames. Function predictActions() is converting
actions to JSON and then sends it with HttpPost method to a
server, where upon return it tries to determine if one of the
predefined strategies is active or not. This function uses our
machine learning models to detect the actual strategy played
by opponent. Following sections will describe the models in
more detail.

V. DATA PROCESSING & MODELING

To correctly predict the player’s strategy during the Starcraft
match, models for detection of these strategies must be trained,
evaluated and then used in the run-time. During the creation
of the models, we employed CRISP-DM [22], a standard and
widely used methodology for solving of knowledge discovery
tasks. Initial phase of the methodology put strong emphasis
on the problem formulation and its transformation into the
data-mining task. From the problem description (see section 2
Problem Domain) decided to approach the strategy detection
as a predictive modeling task. Our approach will be based on
training of a set of binary classification models on top of the
obtained from the replays. We decided to choose the binary
classification approach for several reasons. When expanding
the model to the new strategies, such approach presents more
flexible solution, as it is not needed to re-train and re-deploy
the model (only a new model for particular strategy will
be added). Also, the performance of binary models should
be better as it is possible to tune the features and model
parameters more specific to particular strategy. Following sub-
sections describe the data understanding, pre-processing and
modeling phases of the model building process.

A. Data acquisition and annotation

For the problem discussed in this paper, there was not a
relevant annotated dataset currently available. Therefore, we
needed to construct the dataset from available replays and
select the relevant attributes for training of the models. The
source of the data were replays of various matches during
the SSCAI Tournament. The replays consisted of matches
performed by various bots. Over 2961 replays were collected,
each of them contained two custom bots made by various
people in 1vsl match. To get the data needed for training
of the models, we used ScExtractor tool. The tool extracted
all relevant information out of the selected replay files. Then,
we developed a script, which plays every match again in real-
time, frame by frame, in order to gain complete picture - record
every possible state of any unit and any event which occurred
during the game. Such database comprised complete game data

162

of hundreds of replays and resulting dataset size was more than
7.6 GB.

B. Data pre-processing

In order to reduce the data size, we selected the tables and
attributes relevant to discussed problem. Also, we processed
the data using a set of functions to enhance them with specific
attributes related to the player’s race or types of units built.
After that, the data were aggregated based on 5 second interval
(cca 240 frames). Resulting dataset was then annotated using
OpenBW replay-viewer module. When the particular strategy
was occuring during the match, the corresponding records
(target attributes) were flagged to value 1, until bot’s strategy
changed to something else. Final dataset then consisted of
these attributes:

PlayerReplayID: ID of player replay.

AC_FRAME: frame number.

Race: type of player’s race.

NumberOfBuildings: number of buildings constructed.
NumberOfWorkers: number of workers trained.
NumberOfAttackUnits: numbers of attack units trained.
NumberOfAttacks: number of attack actions.
RatioAttackToNon: ratio attack actions to non-attack ac-
tions.
exp_featurel:
exp_feature2:
exp_feature3:
exp_feature4:
group?
exp_feature5:
exp_feature6:
exp_feature7:

Protoss_Forge is built?

Protoss_Pylon is build?
Protoss_PhotonCannon is build?

Is scout (unit first tagged as a scout) in the

Is scout near the enemy base?
Zerg_SpawningPool is build?
Zerg_Extractor is build?
exp_feature8: Zerg_Zeglings are train?
exp_feature9: How many Protoss_Gateway is build?
exp_feature10: Protoss_Assimilator is build?
exp_featurel1: Protoss_CybernaticsCore is build?
exp_feature12: Protoss_Zealots are train?
exp_feature13: AttackUnits are near the enemy base?
Results1: Strategy 1: Cannon rush is active?
Results2: Strategy 2: Zergling rush is active?
Results3: Strategy 3: 2-gate is active?

Results4: Strategy 4: 3-gate is active?

C. Training of the models

To solve the problem defined within this paper, we picked
three models different classification models to compare; Ran-
dom Forests, Naive Bayes and Gradient Boosting Tree, in
order to get different results. Each model was trained to
solve the binary classification task to predict one of the target
attributes (Results1-4). We used the implementation of the
models from the sci-kit learn python library®.

Feature selection was also performed for each of the trained
models. As we used Random Forests, we extracted features
importance from the initial model results. We used the data to

Shttp:/scikit-learn.org/



TABLE I: Evaluation of the models for particular strategies.

Models
Strategies RET GBM
P R P R
Strategy 1 | 0.690 | 0.756 | 0.734 | 0.742
Strategy 2 | 0.930 | 0.832 | 0.992 | 0.832
Strategy 3 | 0.892 | 0.673 | 0.980 | 0.730
Strategy 4 | 0.928 | 0.860 | 0.957 | 0.886

select the attributes, which were not relevant to train the model
for particular strategy. Fig. 2 depicts the features importance
for model used to detect the Strategy 1 (Cannon Rush).
In his case, we decided to remove the attributes Race and
NumberOfWorkers from the training data. Similar approach
was used to reduce the feature space for other strategies.
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Fig. 2: Feature importance analysis for Strategy 1 (Can-
non rush) V.

For training of the models for particular strategies, we used
data from 108 replays which corresponded to 17778 records.
During the model training, we used GridSearchCV method to
examine the different combination of model hyper-parameters
in order to find the best model with respect to the specified
metrics.

VI. EVALUATION

For evaluation purposes, we used standard metrics used to
specify the model quality such as precision and recall. Those
were specified as the main factors during the hyper-parameters
tuning and were used to evaluate the final models on the testing
set.

For training and evaluation of the models, we used 10-fold
cross-validation approach. Tab. I summarizes the performance
of the models Naive Bayes model is not included as its results
were much worse, when comparing to Random Forests and
GBM models. As it is can be seen from the results, GBM
models performed well in each task.

By incorporating the metrics we were able to compare the
different models. After closer consideration, we decided to use

GBM models for several reasons. GBM gave almost constantly
the best results in each considered metric on both datasets. he
best GBM models were trained using those parameters:

o Strategy 1 model: Maximum features: 10, learning rate:
0.01, max. depth: 5, min. samples in the leaf: 10

o Strategy 2 model: Maximum features: 9, learning rate:
0.01, max. depth: 7, min. samples in the leaf: 50

o Strategy 3 model: Maximum features: 7, learning rate:
0.01, max. depth: 4, min. samples in the leaf: 1

o Strategy 4 model: Maximum features: 9, learning rate:
0.01, max. depth: 9, min. samples in the leaf: 20

We also considered time constraints - time to build the
model and time to predict the newly arriving instances (in
run-time). From that perspective, both Random Forests and
GBM models achieved similar performance results, therefore
running time was not considered as important feature when
choosing the model.

Trained models then were deployed in the proposed system
(see section IV. Proposed architecture). System obtains live
data from the actual replay or game (played by both, bot or
human player) sends it to the server which computes prediction
for each of trained strategies. Results are retrieved to the client
and players (or users watching a replay) are being notified
about detected strategy. Integration of proposed solution was
tested on various replays and game matches involved players
and multiple bots.

VII. CONCLUSION

Presented paper introduced a system able to gather the data
from StarCraft games and to detect the player’s strategy using
machine learning models. As a part of the system evaluation,
several predictive models were trained using collected histor-
ical game data and used to identify specific strategy chosen
by a player or a bot. Our approach is based on training binary
classifiers for each covered strategy. Such approach enables
to fluently extend the system with a wide range of models to
identify other strategies (not covered in our use cases), or to
update the existing models with more precise ones. Designed
system also enables to deploy such models and use them on
live data int the real-time gameplay. The work presented in
this paper could also serve as a basis for implementation
of more advanced approaches involving machine learning.
We also investigated enhancement of the particular strategy
identification with finding sequential patterns characteristic for
each particular strategy or to combine the detection system
with case-based reasoning approaches in order to create rec-
ommendation system which would advise the player a best
counter-strategy for actual opponent.
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